LECTURE 5: WEAR LEVELING AND PERFORMANCE
Summary

- WA reduces with amount of spare
- LRU GC: simple
- Greedy GC: optimal
- Greedy approaches LRU with large N_p
- Another advantage of LRU: Wear leveling
The Fundamental Property of Flash Storage

Theorem:
For a device with \#E_units=n, after a workload of nt uniform writes, the probability that there exists an E_unit with more than \(\log n \) dirty P_units tends to 0 as \(n \to \infty \).

Balls and Bins:
n bins, M balls
1/n: probability of ball falling in bin i
Balls-and-Bins Max Occupancy

Implication:
- No block with “very many” dirty pages.
- t on average, $\log n$ max.
- Greedy not fundamentally better than random choice

Proof:

$Pr[M \text{ balls or more in bin } i] < ?$

$Pr[M \text{ balls or more in any bin}] < ?$

$Pr[\log n \text{ balls or more in any bin}] \rightarrow 0$
Beyond Uniform Workloads

1. **Hot/Cold** logical addresses

- Can separate **hot** and **cold** to two independent mapping layers with same over-provisioning factor
- Same A as with uniform
- Can do better. How?
p-Local Workloads

2. Time-locality with parameter p

$$p$$

$$1-p$$

Recently accessed Lpages

Other Lpages

uniform

uniform
p-Local Workloads

2. Aging parameter h

User writes: 1, 2, ..., h, $h+1$, ...

Recently accessed Lpages

Other Lpages
Write Amplification with p- Locality

Graph showing the relationship between p (x-axis) and A (y-axis) with a line marked as greedy.
Wear Leveling

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>
Erase Count

$N_p=1$, $T=U=1$

E_{unit} 1

E_{unit} erase count limit: K

Total number of writes before end of life = $1 + K$

$H \ H \ H \ \ldots \ H$

K updates
Uneven Wear

$N_p = 1$, $T = U = 2$

E_unit 1

E_unit 2

E_unit erase count limit: K

Total number of writes before end of life = $2 + K$

$C_1 \ H_2 \ H_2 \ H_2 \ldots \ H_2$

K times \rightarrow used only K erases out of the total 2K
Leveling the Wear

\[N_p=1, \ T=U=2 \]

Can we get to 2\(K+2\) writes? \textit{Almost}...

Example logical write sequence:
\[C \ H \ H \ H \ ... \ H \]

2\(K\) times

Physical write sequence:
\[C_1 \ H_2 \ H_2 \ H_2 \ ... \ H_2 \ C_2 \ H_1 \ H_1 \ H_1 \ ... \ H_1 \]

\[\text{total writes} = 2K+1 \]
Wear-Leveling Algorithm

Theorem:
For $T=U=n$, $N_p=1$, any sequence of nK write requests can be fulfilled.

Algorithm:

(1) Copy logical unit L into $E_{\text{unit } i}$ if
 $$\text{wear}(i) + \text{remaining_writes}(L) = K-1$$

Proof idea:

(*) Every L is copied at most once. → overhead up to n
(*) All unused wear can be claimed by (1) operations
On-Line Wear Leveling

• Previous algorithm required knowledge of full access sequence (off line).

• What if wear-leveling is required for on-line accesses?
On-Line Wear-Leveling Algorithm

Algorithm OL1:

<table>
<thead>
<tr>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>...</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td></td>
<td>Ln</td>
</tr>
</tbody>
</table>

1. Assign Li to Ei, for all i
2. Li request \rightarrow write in Ei

Theorem: Algorithm OL1 is optimal

Proof:

Host can always issue a request to $\text{argmax}[\text{wear}(E_i)]$

On-line wear leveling not possible without over-provisioning
Algorithm OL2:

<table>
<thead>
<tr>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>...</th>
<th>Em</th>
<th>Em+1</th>
<th>...</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>...</td>
<td>Lm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Assign L_i to E_i, for all i
2. L_i request \rightarrow write to unused E_j with lowest wear

Algorithm OL2 guarantees $(n-m+1)K$ updates (OL1 special case $n=m$)

Theorem: Algorithm OL2 is optimal
Proof:

Adversarial host:
(1) Fix a set of $S=n-m+1$ physical E_units
(2) Issue write requests only to Li’s in S

Idea: There is always at least one Li allocated in S, hence $\sum_{j \in S} \text{wear}(E_j)$ grows by at least 1 every write

Total updates at most $|S|K=(n-m+1)K$
Performance of Algorithms

Let A be an algorithm with inputs taken from χ. Denote the performance of A on input $x \in \chi$ by

$$Q[A(x)]$$

Example: wear lifetime

$$Q[A(x)] = \max [t: \forall j \in \{1, \ldots, n\} wear_t(j) \leq K]$$

$$x = [Req_1, Req_2, \ldots, Req_t, \ldots]$$
Worst-Case Performance

1) Worst-case performance

\[Q_{wc}[A] = \min_{x \in \chi} Q[A(x)] \]

Every \(x \in \chi \) gives \(Q[A(x)] \geq Q_{wc}[A] \).
2) Average-case performance

Let $x \sim D(\chi)$, D is a probability distribution on the inputs.

$$Q_{av}[A] = E_D[Q[A(x)]]$$

Often $D = U$ is the uniform distribution.
1) Offline performance

\[y = A(x) \]

A emits outputs only when the full \(x \) is given.

1) Online performance

A emits outputs / commits actions after every \(x_i \).

\[
\begin{align*}
&x_1 \\
&x_1, x_2 \\
&x_1, x_2, ..., x_i \\
&\rightarrow A \\
&\rightarrow y_1 \\
&\rightarrow y_2 \\
&\rightarrow y_i
\end{align*}
\]
Deterministic vs. Probabilistic

1) Deterministic A

\[x \rightarrow A \rightarrow y \]

A is known to all.

1) Probabilistic A (also called randomized)

\[x \rightarrow A \rightarrow y \]

\[c \uparrow \]

A is known to all. Input c (random coin flips) is private.
1) Adversarial input

B knows A and chooses x

\[Q_{adv}[A] = \min_{x = B(A)} Q[A(x)] \]

If A is deterministic:

\[Q_{adv}[A] = Q_{wc}[A] \]

If A is randomized:

\[Q_{adv}[A] \geq Q_{wc}[A] \]

\[Q_{adv}[A] = \min_{x \in \chi} E_{c} Q[A(x, c)] \quad Q_{wc}[A] = \min_{x \in \chi} \min_{c \in C} Q[A(x, c)] \]
Deterministic vs. Randomized Wear Leveling

\[N_p=1, \, T=U=N, \, \text{wear_limit}=K \]

Alg. Det.

- Write in **fixed** \(E_{\text{unit}} \)
- 1 erase per \(L_{\text{write}} \)

Alg. Rand.

- Write in **random** \(E_{\text{unit}} \)
- 2 erases per \(L_{\text{write}} \) (with probability \(1-1/U \))

<table>
<thead>
<tr>
<th>Worst case</th>
<th>(K)</th>
<th>(=)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adversarial</td>
<td>(K)</td>
<td>(<)</td>
<td>#ball-pairs, s.t. (\leq K) in all bins</td>
</tr>
<tr>
<td>Sequential</td>
<td>(NK)</td>
<td>(>)</td>
<td>(NK/2)</td>
</tr>
</tbody>
</table>
Performance Evaluation

#balls s.t. \(\leq K \) in all bins

Q:
Given \(n \) bins and bound \(K \) on number of balls, how many balls \(m \) can throw?

A:
Poisson approximation:

\[
\lim_{n \to \infty} \Pr(X_n = k) = p(k) \triangleq \frac{e^{-t} t^k}{k!}
\]

\[
0.001 > \sum_{k=K+1}^{\infty} p(k)
\]

What is \(t \)?

\[t = \frac{m}{n} \text{ (expectation). Find } t \text{ and substitute } m = tn. \]
Other Topics in Data Placement

• Caching/pre-fetching
 – Move data between fast and slow media to maximize R/W performance

• Compression and data reduction
 – Can improve access and wear performance
 – Challenges to mapping layer

• Workload detection and prediction
 – Tailor placement to workload features

• Security and access control
 – Data privacy, access privileges