LECTURE 8: MULTI-LEVEL RE-WRITE CODES
(n,k,t) WOM code:
Write k bits t times, on n cells

HOST → PHY WRITE
k bits

PHY WRITE

0 → 1 yes
1 → 0 no

Flash Media

n cells

WW ... W EW W W ... W E ...
t writes
Multi-Write (=Re-Write) Access

- Example $t = 2$
 - Writes:
 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 0, 4, 8, 12
1) Decoding Function

\[\psi \left(c_1, \cdots, c_n \right) = \left(y_1, \cdots, y_k \right) \]
\[c_i \in \{0,1\} \]

2) Update Function

\[\mu \left(c_1, \cdots, c_n ; y_1, \cdots, y_k \right) = \left(c'_1, \cdots, c'_n \right) \]

current cell values \quad new data \quad new cell values

1 \rightarrow 0
Binary → q-ary

- **Storage rate:** q-ary WOM codes need lower redundancy for the same number of writes

- **Complexity:**
 - Exponential in \(n \)
 - Polynomial in \(q \)
Multi-Level Re-Write Codes

1) Decoding Function

\[\psi \left(c_1, \ldots, c_n \right) = \left(y_1, \ldots, y_k \right) \]

\[c_i \in \{0, \ldots, q - 1\} \]

2) Update Function

\[\mu \left(c_1, \ldots, c_n ; y_1, \ldots, y_k \right) = \left(c_1', \ldots, c_n' \right) \]

current cell values new data new cell values
Single-Cell q-ary Code

$n=1$, $k=1$, $t=q-1$
Single-Cell q-ary Code

$n=1, \ k=2, \ t=(q-1)/3$

- $y=00$
- $y=01$
- $y=10$
- $y=11$
Single-Cell, General k

$n=1$, k, $t=(q-1)/(2^k-1)$

t is inverse exponential in k
2 Cells, k=3

Option 1: concatenate

2 x q-ary cells → 1 x 2q-1 ary cell

\[t = \left\lfloor \frac{2q - 2}{2^3 - 1} \right\rfloor = \left\lfloor \frac{2}{7} (q - 1) \right\rfloor \]
2 Cells, $k=3$

$n=2$, $k=3$

Option 2: 2D code

$\{0, 1, \ldots, 7\} \leftrightarrow (y_1, y_2, y_3)$

Option 1

Option 2

$t = ?$
2 Cells, k=3: 2D Code

\[t = \left\lfloor \frac{1}{2} (q - 1) \right\rfloor \]
Can We Do Better?

t = \left\lfloor \frac{1}{2} (q - 1) \right\rfloor
Step 1: Tiling

Lattice Tiling:

\[v_1 = (2, 2) \]
\[v_2 = (3, -1) \]

Translate to:

\[a_1 v_1 + a_2 v_2 \]

\[a_1, a_2 \text{ integers} \]
t=4 Writes with q=8 Levels

<table>
<thead>
<tr>
<th>8</th>
<th>0 2 5 1 4 7 3 6 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7 3 6 0 2 5 1 4 7</td>
</tr>
<tr>
<td>6</td>
<td>5 1 4 7 3 6 0 2 5</td>
</tr>
<tr>
<td>5</td>
<td>6 0 2 5 1 4 7 3 6</td>
</tr>
<tr>
<td>4</td>
<td>4 7 3 6 0 2 5 1 4</td>
</tr>
<tr>
<td>3</td>
<td>2 5 1 4 7 3 6 0 2</td>
</tr>
<tr>
<td>2</td>
<td>3 6 0 2 5 1 4 7 3</td>
</tr>
<tr>
<td>1</td>
<td>1 4 7 3 6 0 2 5 1</td>
</tr>
<tr>
<td>0</td>
<td>0 2 5 1 4 7 3 6 0</td>
</tr>
</tbody>
</table>

C2

C1
t=4 Writes with q=8 Levels

Problem:
2-increment x4

Example, write

C

7 5 4 6 0 2 5 1 4
5 1 4 7 3 6 0 2
6 0 2 5 1 4 7 3
4 7 3 6 0 2 5 1
3 2 5 1 4 7 3 6 0
2 3 6 0 2 5 1 4 7
1 4 7 3 6 0 2 5
0 2 5 1 4 7 3 6

4 7 5 6
$t=4$ Writes with $q=8$ Levels

Solution:
Nearest \rightarrow Balanced

\[\begin{array}{cccccccc}
7 & 3 & 6 & 0 & 2 & 5 & 1 & 4 \\
5 & 1 & 4 & 7 & 3 & 6 & 0 & 2 \\
6 & 0 & 2 & 5 & 1 & 4 & 7 & 3 \\
4 & 7 & 3 & 6 & 0 & 2 & 5 & 1 \\
2 & 5 & 1 & 4 & 7 & 3 & 6 & 0 \\
3 & 6 & 0 & 2 & 5 & 1 & 4 & 7 \\
1 & 4 & 7 & 3 & 6 & 0 & 2 & 5 \\
0 & 2 & 5 & 1 & 4 & 7 & 3 & 6 \\
\end{array}\]
Lattice Equivalence → Balance

\[\sum (2,1) (2,1) (2,1) (2,1) = (8,3) \] Nearest

\[\sum (2,1) (2,1) (2,1) (1,4) = (7,7) \] Balanced

Lattice equivalent \[(1,4) = (2,1) + (-1,3) = (2,1) + v_1 - v_2 \]
2D with Tiling

- $k=3$: \[t = \left\lfloor \frac{4}{7} (q - 1) \right\rfloor \]

- General odd k, $t=4$:

 \[
 q = 6 \cdot 2^{\frac{k-1}{2}} - 3 \quad \rightarrow \quad q = 5.5 \cdot 2^{\frac{k-1}{2}} - 3
 \]

 No tiling \hspace{1cm} \text{Tiling}
q-ary WOM Capacity

Theorem: for each q-ary cell, the total information rate in t writes satisfies

\[R_{sum} \leq C(q, t) = \log_2 \binom{q + t - 1}{t} \] [bits]

Proof idea:
How many ways to divide q-1 (increments) among t+1 sets with sizes \(\geq 0 \)?

Upper bound on the number of writes:

\[tk \leq n \log_2 \binom{q + t - 1}{t} \]
Optimal fixed-rate codes?

• **Problem:** capacity upper bound likely not tight
 - Allows *variable-rate* codes
 - Gap is proven for binary codes
Fixed-Rate Upper Bound

Theorem (n=2):
Let s be an integer. If $2^k > s(s + 1)/2$, then the number of writes satisfies

$$t \leq \left\lfloor \frac{2(q - 1)}{s} \right\rfloor$$

Proof idea:
With k input bits, there exists a worst-case input that increments the sum of levels by at least s.

For k=3:
Any code satisfies

$$t \leq \left\lfloor \frac{2(q - 1)}{3} \right\rfloor$$
Can We Do $n=2$, $k=3$, $t=3$ with $q=6$?
Can we write 3 times with $q=6$?

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1: easy

Cell 2

Cell 1
Step 2: 2nd write Sudoku

All numbers 0,1,2,3,4,5,7 in 8 positions

Cell 2

Cell 1
Step 2: 2nd write Sudoku

All numbers 0,1,2,3,4,5,6 in 8 positions

Cell 2

Cell 1
2nd write Solution
Step 3: 3rd write Sudoku

Cell 2

Cell 1
3rd write Solution

Got $t=3$!
Optimal code family, k=3

Theorem (k=3): An explicit construction exists with

\[t = \left\lfloor \frac{2(q-1)}{3} \right\rfloor - 1. \]

Matching upper bound (k=3): Any code satisfies

\[t \leq \left\lfloor \frac{2(q-1)}{3} \right\rfloor - 1. \]
Practical Re-Write Codes II

All bits equal

Hot/Cold bits

File System log → ReWrite $k=2$ → In-laws’ photos

File System log → ReWrite $1+1$ → hot/cold

In-laws’ photos
Hot+Cold Rewrite

- k bits are written
- t writes for k bits
- 1 write for each cold bit
 (anywhere in the write sequence)